APPLICATION CHECKLIST FOR EXPEDITED PROCESSING
OF PERMITS FOR ELECTRIC VEHICLE CHARGING
STATIONS

City of Laguna Woods
Planning & Environmental Services Department
24264 El Toro Road, Laguna Woods, CA 92637
Ph: (949) 639-0500 Fax: (949) 639-0591
www.cityoflagunawoods.org

INTRODUCTION. To be eligible for expedited permit processing pursuant to Chapter 10.34 of the Laguna Woods Municipal Code, applicants for electric vehicle charging stations must follow this Application Checklist (“Checklist”)1. An application that provides all of the information required by this Checklist, as determined by the City, shall be deemed complete and shall be processed as expeditiously as practicable. For additional information, please contact the City’s Planning & Environmental Services Department during business hours: Monday through Friday, from 8:00 a.m. to 5:00 p.m.

Please be advised that the information provided in this document is general and intended to be used as a guide only. Each project is unique and the City may enforce additional requirements, as necessary.

ELECTRONIC SUBMITTAL. Applicants may also choose to submit application materials electronically, via email. For assistance, please contact the City’s Planning & Environmental Services Department.

I. GENERAL REQUIREMENTS

The term “electric vehicle charging station” is defined in Subsection (i)(3) of Section 65850.7(i)(3) of California Government Code, as amended from time to time or replaced by a successor statute. To qualify as an “electric vehicle charging station,” electric vehicle supply equipment must meet all of the following requirements:

A. The electric vehicle charging station would be designed and built in compliance with Article 625 of the California Electrical Code.
 □ Yes □ No

B. The electric vehicle charging station would deliver electricity from a source outside an electric vehicle into a plug-in electric vehicle.
 □ Yes □ No

II. PERMITTING CHECKLIST

<table>
<thead>
<tr>
<th>Phase 1 Pre-Work Contractor</th>
<th>Residential</th>
<th>Non-Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓ Understands intended use of</td>
<td>✓ Obtain an address for the location</td>
</tr>
<tr>
<td></td>
<td>the EVSE (i.e. personal)</td>
<td>✓ Determine the ownership of the site and/or authorization to install equipment at site</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Understands intended use of the EVSE (i.e., fleet, employee, customer, visitor, etc.)</td>
</tr>
</tbody>
</table>

1 If Chapter 10.34 of the Laguna Woods Municipal Code is amended or renumbered subsequent to the City Council’s adoption of this Checklist, those amendments may be incorporated into this Checklist administratively without the need for City Council approval. In addition, the Building Official may from time to time amend this Checklist pursuant to his or her authority under Chapter 10.34 of the Laguna Woods Municipal Code.

Adopted: August 16, 2017
| Phase 2 Pre-Work Customer | ✓ Determine number of vehicles charging and connectors per charging station
| | ✓ Determine source of power and authorization to use source
| | ✓ Determine type of vehicle(s) to be charged at EVSE
| | ✓ Evaluate mounting type options (i.e., bollard, pole-mount, wall-mount, ceiling-mount)
| | ✓ Clarify communication requirements (i.e., Ethernet, cellular, Wi-Fi, none or other)
| | ✓ Determine the NEMA Enclosure type
| | ✓ Determine the physical dimensions of the space(s)
| | ✓ Inspect the type of circuit breaker panel board intended for the installation
| Phase 3 On-Site Evaluation | ✓ Identify incentives or rate structures through the utility
| | ✓ Determine size of electrical service at the site
| | ✓ Identify and contact applicable local permit office(s) to identify specific requirements, including local fire, environmental, construction, building, concealment and engineering requirements
| | ✓ Identify incentives available through local, state or federal programs
| | ✓ Contact insurance company to acquire additional insurance or separate coverage as needed
| | ✓ Hire the contractor and verify credentials with all subcontractors; ensure electrical contractor’s license for electrical work is current
| Phase 4 On-Site Survey | ✓ Verify EVSE meets UL requirements and is listed by UL or another nationally recognized testing laboratory
| | ✓ Verify EVSE has an appropriate NEMA rated enclosure (NEC 110.28) based on environment and customer needs, such as weatherization or greater levels of resistance to water and corrosive agents
| | ✓ Determine the level or charger meets customer’s PEV requirements (most vehicles require the maximum of a 240V/32A (40A breaker)
| | ✓ Based on proposed EVSE location, determine if cord length will reach a vehicle’s charging inlet without excessive slack and does not need to be more than 25’ in length (NEC 625.17)
| | ✓ Cord management methodologies have been considered to reduce the risk of tripping hazards and accidental damage to the connector
| | ✓ Mounting type selection based on requirements to meet site guidelines
| | ✓ Determine whether EVSE communication options are beneficial to customer and/or local utility

Ensure overhead doors and vehicle parking spot do not conflict with EVSE location
Place EVSE in a location convenient to charging port on vehicle and typical orientation of the vehicle in garage (i.e., backed in or head-first)
Ensure functionality of lighting in the garage to meet NEC code 210-70
Space(s) should be visible to drivers and pedestrians
Determine proximity to building entrance (could be considered an incentive for PEV use)
Select spaces proximate to existing transformer or panel with sufficient electrical capacity
EVSE installation should maintain a minimum parking space length to comply with local zoning requirements
If available, use wider spaces to reduce the risk of cord damage and minimize the intersection of cords with walking paths

Adopted: August 16, 2017
Ensure sufficient lighting at proposed space(s) to reduce the risk of tripping and damage to charging station from vehicle impact or vandalism; light levels above two foot candles are recommended

Address accessibility requirements (refer to the Plug-In Electric Vehicle Infrastructure and Equipment Accessibility section of the Guidebook for more information)

Determine availability of space for informative signing

EVSE with multiple cords should be placed to avoid crossing other parking spaces

All available charging station mounting options should be considered and optimized for the space

Determine if hazardous materials were located at the site

PARKING DECKS

Place EVSE towards the interior of a parking deck to avoid weather-related impacts on equipment

PARKING LOTS

Avoid existing infrastructure and landscaping to mitigate costs, potential hazards and other negative impacts

ON-STREET

Install on streets with high foot and vehicle traffic to mitigate vandalism

Avoid existing infrastructure to mitigate costs, potential hazards and other negative impacts

Address accessibility requirements (refer to the Plug-In Electric Vehicle Infrastructure and Equipment Accessibility section of the Guidebook for more information)

For pull-in spaces, EVSE should be placed in front of the space and either centered on the space if placed between two spaces (if two connectors are available); EVSE with more than two connectors should not be used in on-street applications

For parallel parking locations, the charging station should be installed at the front third of the parked vehicle and based on the direction of traffic flow; EVSE with a single connector is recommended to reduce potential trip hazards

Mount the connector at a height between 36” and 48” from the ground (NEC 625.29) unless otherwise indicated by the manufacturer
<table>
<thead>
<tr>
<th>Phase 4 Contractor Installation Preparation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>Price quote submitted to customer and approved including utility upgrades</td>
</tr>
<tr>
<td>✓</td>
<td>Order equipment</td>
</tr>
<tr>
<td>✓</td>
<td>Provide stamped engineering calculations as needed</td>
</tr>
<tr>
<td>✓</td>
<td>Provide site plan modification with diagrams as necessary</td>
</tr>
<tr>
<td>✓</td>
<td>Complete all necessary service upgrades and/or new service assessments</td>
</tr>
<tr>
<td>✓</td>
<td>Complete permit applications as required by local permitting department</td>
</tr>
<tr>
<td>✓</td>
<td>Ensure permit is approved and collected</td>
</tr>
<tr>
<td>✓</td>
<td>Schedule all necessary contract work (i.e., boring, concrete and/or paving restoration) and utility work (i.e., utility marking, service upgrade, new service and/or meter pull)</td>
</tr>
<tr>
<td>✓</td>
<td>Ensure utility marking of existing power lines, gas lines or other infrastructure is completed and utilize “call before you dig” services</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 5 Installation</th>
<th>Phase 6 Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>Residential garages may permit the use of nonmetallic-sheathed cable in lieu of conduit</td>
</tr>
<tr>
<td>✓</td>
<td>Run conduit from power source to station location</td>
</tr>
<tr>
<td>✓</td>
<td>For EVSE greater than 60 amperes, a separate disconnect is required (NEC 625.23) and should be installed concurrently with conduit and visible from the EVSE</td>
</tr>
<tr>
<td>✓</td>
<td>Post permit at site in visible location</td>
</tr>
<tr>
<td>✓</td>
<td>Remove material to run conduit and/or wiring (i.e., drywall, insulation, pavers, concrete, pavement, earth, etc.)</td>
</tr>
<tr>
<td>✓</td>
<td>Contractors are encouraged to examine requirement for installation sites and types of wiring in Chapter 3 of the NEC</td>
</tr>
<tr>
<td>✓</td>
<td>Pull wiring; charging stations require a neutral line and a ground line and equipment is considered to be a continuous load</td>
</tr>
<tr>
<td>✓</td>
<td>Conduits should be sized to support 125% of the rated equipment load (NEC 625.21)</td>
</tr>
<tr>
<td>✓</td>
<td>Preparing mounting surface and install per equipment manufacturer instructions</td>
</tr>
<tr>
<td>✓</td>
<td>Floor-mount: typically requires a concrete foundation with J-bolts on station base; place with space to allow conductors to enter through the base</td>
</tr>
<tr>
<td>✓</td>
<td>Wall/pole/ceiling-mount: install brackets for mounting of the equipment</td>
</tr>
<tr>
<td>✓</td>
<td>Install bollard(s) and/or wheel stop(s) as needed</td>
</tr>
<tr>
<td>✓</td>
<td>Install informative signage to identify the EVSE and potential trip hazards</td>
</tr>
<tr>
<td>✓</td>
<td>Install additional electrical panels or subpanels as needed</td>
</tr>
<tr>
<td>✓</td>
<td>Install service upgrades, new service and/or new meter as needed; utility may also pull a meter to allow for charging station wires to be connected to a panel</td>
</tr>
<tr>
<td>✓</td>
<td>Make electrical connection</td>
</tr>
<tr>
<td>✓</td>
<td>Perform finish work to repair existing infrastructure, surfaces and landscaping</td>
</tr>
<tr>
<td>✓</td>
<td>An initial electrical inspection by applicable building, fire, environmental and electrical authorities should occur after conduit has been run and prior to connecting equipment and running wires; if necessary, contractor should correct any issues and schedule a second rough inspection</td>
</tr>
</tbody>
</table>

Adopted: August 16, 2017
If required, the inspector will perform a final inspection to ensure compliance with NEC and other codes adopted within the jurisdiction by inspecting wiring, connections, mounting and finish work.

Contractor should verify EVSE functionality.

Additional Resources
- National Codes and Standards
- American National Standards Institute (ANSI)
- National Fire Protection Association (NFPA)
- Underwriters Laboratories, Inc. (UL)
- International Association of Electrical Inspectors (IAEI)
- International Code Council (ICC)
- NECA-NEIS Standards
- NECA and NFPA Webinars
- Electrical Vehicle Infrastructure Training Program (EVITP) Installer Training Course/Certification

III. SUBMITTAL REQUIREMENTS

Applicants must submit all of the following items prior to obtaining permits:

1. City Building Permit Application Form (with required fees)

2. Plans with the following minimum information:
 - Property Information: Address of the property; name, address, and telephone number of the property owner; occupancy type; and, description of the scope of work
 - Site plans showing the current and proposed locations of the building, street, electric vehicle charging stations, electric service meters, conduit location, and disconnects
 - A single line diagram must be included in the submittal with the following information:
 - Conductor types and sizes
 - Size of the over current device (circuit breaker) supplying the charging station
 - Conduit size, type, and location
 - Manufacturer and model of the charging station
 - Size of the main electric panel, distribution panels (sub panels), and disconnects.
 - Type of the charging station (Level 1, 2, or 3)
 - Electrical Load Calculation Sheet: Provide size of the existing electrical panel, existing load on the panel, and proposed load/circuits from the electric vehicle charging system, in order to determine if there is adequate capacity in the existing panel (CEC 220)
 - Detail for post/bollard installations where protection of electrical equipment is required (CEC 110.27)

3. Manufacturer’s installation instructions and specifications for the electric vehicle charging station